
Analysing Large Inconsistent Knowledge Graphs

Thomas de Groot, Joe Raad, and Stefan Schlobach

Knowledge Representation & Reasoning Group, VU University Amsterdam
{t.j.a.de.groot, j.raad, k.s.schlobach}@vu.nl

Abstract. Based on formal semantics, most of the Knowledge Graphs
(KGs) on the Web of Data can be put to practical use. Unfortunately, a
significant number of those KGs contain contradicting statements, and
hence are logically inconsistent. This makes reasoning limited and the
knowledge formally useless. Understanding how these contradictions are
formed, how often they occur, and how they vary between different KGs,
is essential for fixing and avoiding such contradictions in the future, or are
at least for developing better tools that handle inconsistent KGs. Meth-
ods exist to explain a single contradiction, by finding the minimal set of
axioms sufficient to produce it, a process known as justification retrieval.
In large KGs, these justifications can be frequent and might redundantly
refer to the same type of modelling mistake. Furthermore, these justi-
fications are –by definition– domain dependent, and hence difficult to
interpret or compare. This paper introduces the notion of anti-pattern
for generalising these justifications, and presents an approach for detect-
ing almost all anti-patterns from any inconsistent KG. Experiments on
KGs of over 28 billion triples show the scalability of this approach, and
the importance of anti-patterns to analyse and compare contradictions
between KGs.

Keywords: linked open data, reasoning, inconsistency

1 Introduction

Through the combination of web technologies and a judicious choice of formal
expressivity (description logics which correspond to a decidable 2-variable frag-
ment of first order logic), it has become possible to construct and reason over
Knowledge Graphs (KGs) of sizes that were not imaginable only few years ago.
Nowadays, KGs of hundreds of millions of statements are routinely deployed
by researchers from various fields and companies worldwide. Since most of the
larger KGs are traditionally built over a longer period of time, by different col-
laborators, these KGs are highly prone for containing logically contradicting
statements. As a consequence, reasoning over these KGs becomes limited and
the knowledge formally useless.

Typically, once these contradicting statements in a KG are retrieved, these
incoherences are either explained [16], repaired [15] or ignored via non-standard
reasoning [11]. This work falls in the first category of approaches, where the
focus is to find out and explain what has been stated in the KG that causes



2 Thomas de Groot, Joe Raad, and Stefan Schlobach

the inconsistency to hold. Understanding how these contradictions are formed
and how often they occur is essential for fixing and avoiding such contradic-
tions in the future. At the least, it is a necessary step for developing better
tools that can handle inconsistent KGs. In the field of contradiction explainabil-
ity (or more generally entailment explainability), research has mainly focused
on a specific type of explanation called justifications. A justification for a con-
tradiction (entailment) in the KG is a minimal subset of the ontology that is
sufficient for the contradiction (entailment) to hold. For instance, in the known
Pizza ontology1 that serves as a tutorial for OWL and Protégé, we can find
two contradictions that were asserted by its developers on purpose. The first
contradiction (A) demonstrates the unsatisfiable class CheesyVegetableTopping,
that has two disjoint parents CheeseTopping and VegetableTopping. The second
of those contradictions (B) demonstrates a common mistake made with setting
a property’s domain. The property hasTopping has as domain the class Pizza.
This means that the reasoner can infer that all individuals using the hasTopping
property must be of type Pizza. On the other hand, we find in the same ontology
a property restriction on the class IceCream, stating that all members of this
class must use the hasTopping property. However, since the ontology specifies
that the classes Pizza and IceCream are disjoint, this causes an inconsistency
in the ontology. As presented in Figure 1, justifications serve to explain such
contradictions, by showing the minimal set of axioms from the ontology that
causes the contradiction to hold.

(a) Justification of contradiction A

(b) Justification of contradiction B

Fig. 1: Screenshot of Protégé showing the justifications of two contradictions
found in the Pizza ontology

Although justifications provide a good basis for debugging modelling and
data quality issues in the KG, their specificity in explaining the contradictions

1 https://protege.stanford.edu/ontologies/pizza/pizza.owl



Analysing Large Inconsistent Knowledge Graphs 3

increases in some cases the complexity for analysing and dealing with these de-
tected contradictions. Particularly in larger KGs, these complexities are ampli-
fied and encountered in different dimensions. Firstly, existing methods to retrieve
entailment justifications do not scale to KGs with billions of triples. Secondly,
these retrieved contradictions with their justifications can be too frequent to
manually analyse and understand the modelling mistakes made by the ontology
designer. This is especially inconvenient when a significant number of these re-
trieved justifications actually refer to the same type of mistake, but instantiated
in different parts of the KG (e.g. similar misuse of the properties’ domain and
range in multiple cases). Thirdly, since justifications represent a subset of the
KG, they are by definition domain dependent, and requires basic domain knowl-
edge for understanding the contradiction. This fact is obviously more limiting
in complex domains, such as medical KGs, as opposed to the Pizza ontology
example above. These various challenges in computing and understanding justi-
fications in their traditional form, poses the following research questions:

Q1: Can we define a more general explanation of contradictions that categorises
the most common mistakes, independently from the domain of the KG?

Q2: Can we retrieve these generalised explanations from any KG, independently
from its size?

Q3: How can these generalised explanations help analysing and comparing cer-
tain characteristics between the most commonly used KGs in the Web?

This paper introduces a method for extracting and generalising contradic-
tions from KGs. We call these generalised contradictions anti-patterns, as they
can be seen as common mistakes made in modelling the domain, in the KG pop-
ulation process, or possibly in data linking. For the retrieval of the anti-patterns,
we have designed an extraction pipeline that can find anti-patterns from any in-
consistent KG. We test the scalability and the completeness of the approach on
several KGs from the Web, including the LOD-a-lot, DBpedia, YAGO, Linked
Open Vocabularies, and the Pizza ontology, with a combined size of around 30
billion triples. Despite deploying a number of heuristics to ensure scalability, our
experiments show that our method can still detect most anti-patterns in a KG,
in a reasonable runtime and average computational capacity. Finally, we show
how these detected anti-patterns can be put to use for analysing and comparing
certain characteristics of these inconsistent KGs.

The rest of the paper is structured as follows. Section 2 presents related works.
Section 3 presents the preliminaries and the notation. Section 4 introduces the
notion of anti-patterns and describes our approach for detecting them. Section 5
presents the evaluation of the approach. Section 6 presents inconsistency analyses
conducted on several large inconsistent KGs. Section 7 concludes the paper.

2 Related Work

Dealing with inconsistencies. Dealing with inconsistent knowledge bases is an old
problem and solutions have been proposed as early as 1956 by Stephen Toulmin



4 Thomas de Groot, Joe Raad, and Stefan Schlobach

[19], in which the solution is to reason over consistent subbases. Another solution
including changing the inference to fit the inconsistency, such as paraconsistent
reasoning [12]. Debugging inconsistent KGs has taken up traction in the last
decade with work on debugging of ontologies [16], which led to the notion of
justification [10], minimal subsets of the graphs preserving entailments (and
inconsistency). Töpper et al. [18] propose a solution to identify contradictions
in DBpedia for single types of contradiction. With the extraction of our anti-
patterns, we generalise for what works on any arbitrary contradiction. Either et
al. [6] propose two methods to locate contradictions created by combining KGs.
They focus on bridge rules, that connect KGs. The method is further improved
in [21], with an algorithm which uses subsets to locate inconsistencies in the
KGs. Their goal, though, is to find these sets for a specific KG, wherein our case
we generalize the inconsistencies over sets of KGs. Our method reuses part of the
work of [13], where the authors propose the efficient algorithm for path finding
that we use in our subgraph generation.

Characterising KGs. Fárber et al. [7] give an in-depth comparison of several
large KGs and their characteristics. Their work is expanded by Debattista et al.
in [5], in which they analysed 130 datasets from the Linked Open Data Cloud
using 27 Linked Data quality metrics. Both papers show that each graph has a
different underlying structure which leads to different behaviour of algorithms.
In our work, we focus on analysing inconsistency across KGs, given a number of
different metrics. To the best of our knowledge, this has not been done before
on the scale of the Web of Data.

3 Background

We follow the formal notion of a KG from Paulheim et al. [14], stating that “a
KG (i) mainly describes real-world entities, and their interrelations, organized
in a graph, (ii) defines possible classes, and relations of entities in a schema, (iii)
allows for potentially interrelating arbitrary entities with each other and (iv)
covers various topical domains”. We will use the Semantic Web stack, with its
languages RDF, RDFS and OWL as representation languages for data, schema
and ontologies.

A triple pattern is an RDF triple in which at least its subject, predicate or
object is a variable. Any finite set of triple patterns is a basic graph pattern
(BGP), and forms the basis of SPARQL for answering queries (matching a BGP
to a subgraph of the KG by substituting variables with RDF terms).

We use the standard notions of entailment, satisfiability and consistency for
RDF(S) and OWL. Most importantly, an inconsistent KG is a graph for which
no model exists, i.e. a formal interpretation that satisfies all the triples in the
graph given the semantics of the used vocabularies. This means that one or more
statements that are contradicting with each other. A justification is a set of
axioms that acts as an explanation for an entailment. Formally, a justification is
a minimal subset of the original axioms which are sufficient to prove the entailed



Analysing Large Inconsistent Knowledge Graphs 5

formula. Given that our KGs are sets of triples, our justifications are instantiated
BGPs and are always a minimal set of axioms for a single contradiction.

4 Defining and Detecting Anti-Patterns

In this section, we introduce the notion of anti-patterns, and describe our ap-
proach for retrieving anti-patterns from any inconsistent KG.

4.1 Anti-patterns

A justification is a description of a single contradiction, which can be repre-
sented as an instantiated BGP. If a KG shares contradictions of similar types,
we generalise justifications towards what we call anti-patterns. An anti-pattern
of a KG is a minimal set of non-instantiated triple patterns that match an in-
consistent subgraph of this KG. These anti-patterns can intuitively be seen as
common mistakes in datasets. To transform a justification into an anti-pattern,
we replace the elements in the subject and object position in the BGP with
variables. In order to prevent breaking the contradiction, elements appearing in
the predicate position of a justification are not replaced in the anti-pattern, with
the exception of one case: elements appearing both in the predicate position and
in the subject or object position of the same justification.

Going back to the example of Figure 1, we presented two contradictions found
in the Pizza ontology with their justifications. Contradiction A shows an incon-
sistency in the ontology in which CheesyVegetableTopping is subclass of the two
disjoint classes CheeseTopping and VegetableTopping. While this example refers
to a specific case of contradiction entailed from the description of these three
classes, it also refers to a common type of modelling mistake which could have
also been present in other parts of the ontology. For instance, using the same
principle, the modeller could have also created the class FruitVegetableTopping
as subclass of the two disjoint classes FruitTopping and VegetableTopping. This
formalisation of certain types of mistakes is what we refer to as anti-patterns.
Figure 2 presents the two anti-patterns generalising contradictions A and B.
For instance in the anti-pattern of contradiction A, the three classes CheesyVeg-
etableTopping, CheeseTopping and VegetableTopping are replaced with the vari-
ables C1, C2 and C3 respectively. In this anti-pattern, replacing the predicate
owl:disjointWith with a variable p1 would break the contradiction, since p1 could
potentially be matched in the KG with another predicate such as rdfs:subClassOf.
On the other hand, we can see in the anti-pattern of contradiction B that the
predicate hasTopping is replaced with the variable p1, since it also appears in
the subject position of the triple 〈hasTopping, rdfs:domain, Pizza〉.

4.2 Approach

This section describes our approach for finding anti-patterns from any inconsis-
tent KG. Finding anti-patterns from a KG would mainly consist of two steps:



6 Thomas de Groot, Joe Raad, and Stefan Schlobach

(a) Anti-pattern of contradiction A (b) Anti-pattern of contradiction B

Fig. 2: Graphical representation of the anti-patterns of the two contradictions
found in the Pizza ontology

retrieving justifications of contradictions, and then generalising these detected
justifications into anti-patterns. Such approach can deal with multiple dimen-
sions of complexity, mainly:

Knowledge Graphs can be too large to query. Now that KGs with bil-
lions of triples have become the norm rather than the exception, such ap-
proach must have a low hardware footprint, and must not assume that every
KG will always be small enough to fit in memory or to be queried in tradi-
tional triple stores.

Justification retrieval algorithms do not scale. Computing all justifications
of existing contradictions typically requires loading the full KG into memory,
and existing methods do not scale to KGs with billions of triples [3].

Comparing anti-patterns can be computationally complex. We will later
see that checking whether justifications can be generalised into the same anti-
pattern, consists of determining whether their anti-patterns are isomorphic,
which is a problem known to not be solvable in polynomial time [9].

Theoretically, guaranteeing the retrieval of all anti-patterns given any incon-
sistent KG requires firstly finding all contradictions’ justifications and then gen-
eralising these justifications into anti-patterns. In practice, and as a way to tackle
the above presented complexities, our approach introduces a number of heuris-
tics in various steps of the pipeline. These heuristics emphasises the scalability
of the approach over guaranteeing its completeness regarding the detection of all
anti-patterns. Mainly, an initial step is introduced in the pipeline that consists
of splitting the original KG into smaller and overlapping subgraphs. Depending
on the splitting strategy, this step can impact the number of retrieved justifi-
cations, which in its turn can potentially impact the number of the retrieved
anti-patterns. In the following, we describe the mains steps of our approach con-
sisting of (1) splitting the KG, (2) retrieving the contradictions’ justifications,
and (3) generalising these justifications. Figure 3 summarises these three steps.

1. Splitting the KGs. Due to the large size of most recent KGs, running a jus-
tification retrieval algorithm over the complete KG to retrieve all contradictions



Analysing Large Inconsistent Knowledge Graphs 7

Fig. 3: A schematic diagram that shows the pipeline used to extract subgraphs,
find justifications and their anti-patterns.

is impractical. To speed up this process or even make it feasible for some larger
KGs, we split the KG into smaller subgraphs. Each subgraph is generated by
extending a root node, which is retrieved by taking a triple from the complete
graph and taking a node that is in the subject position as the starting point.
The graph is expanded by finding all the triples that have the root node as the
subject, and these triples are added to the subgraph. Next, all the nodes in the
object position are expanded, and the graph is expanded as long as possible, or
until the maximum amount of triples set by the user is reached. In Section 5, we
empirically evaluate what would be the optimal subgraph size limit, based on
the trade-off between scalability of the approach and its completeness in terms
of the detected anti-patterns.

2. Justification retrieval. Out of these newly formed subgraphs, we only care
about the ones that are inconsistent. Therefore, we check firstly for the consis-
tency of each of these subgraphs and discard the consistent ones. Then for each
of the inconsistent subgraphs, we run a justification retrieval algorithm to re-
trieve the detected contradiction(s) with their justifications. For this, we use the
justification retrieval algorithm in the Openllet reasoner. The algorithm walks
through the graph and finds the minimal justification for each contradiction. It
continues to search for justifications until no more justification can be found in
the graph2. This step is executed for each subgraph, and all the justifications
are then pushed through the extraction pipeline to the next stage.

3. Justification generalisation. While most justifications are different, as
each justification is a set of instantiated triple pattern, the underlying non-

2 since justification retrieval algorithms can potentially run for a long time in the
search for additional justifications in a KG, we set a runtime limit between 10 and
20 seconds based on the considered subgraph size



8 Thomas de Groot, Joe Raad, and Stefan Schlobach

instantiated BGPs do not have to be. The underlying BGP forms the basis
of the anti-patterns. To retrieve all anti-patterns from the detected justifica-
tions, we first generalise the justification to an anti-pattern by removing the
instantiated subject and object on the nodes (and also the predicate in the
case described in Section 4.1). Justifications with the same underlying pattern
are grouped together. Therefore, given a justification and its generalisation into
anti-pattern, we check whether an anti-pattern with the same structure already
exists. Comparing anti-patterns with different variable names consists in check-
ing whether these anti-patterns are isomorphic. For this, we implement a version
of the VF2 algorithm [4], with the addition of matching the instantiated edges
of the anti-patterns (i.e. for predicates that do not also appear in the subject or
object position of the same justification). If the anti-pattern of a justification is
matched to an existing anti-pattern, we group this justification with the other
justifications generalised by this anti-pattern. Otherwise, a new anti-pattern is
formed as a generalisation of this justification. This algorithm continues until all
justifications have been matched to their corresponding anti-pattern.

Implementation. The source code of our approach is publicly available3. It is
implemented in JAVA, and relies on a number of open-source libraries, mainly
jena4, hdt-java5, openllet6, and owlapi7. All experiments in the following sections
have been performed on an Ubuntu server, 8 CPU Intel 2.40 GHz, with 256 GB
of memory.

5 Experiments

As a way of emphasising scalability over completeness, our approach for finding
anti-patterns from any inconsistent KG implements an initial step that consists
of splitting the KG into smaller and overlapping subgraphs.

In the first part of these experiments (section 5.1), we empirically evaluate
the impact of the subgraph size limit on the efficiency of the approach. Then,
based on the adopted subgraph size limit deducted from the first experiment,
we show (in section 5.2) the scalability of our approach on some of the largest
KGs available on the Web.

5.1 Completeness Evaluation

In this section, we measure the impact of splitting the KG both on the number
of detected anti-patterns, and the runtime of the approach. The goal of this
experiment is to ultimately find the optimal subgraph size limit to consider

3 https://github.com/thomasdegroot18/kbgenerator
4 https://jena.apache.org
5 https://github.com/rdfhdt/hdt-java
6 https://github.com/Galigator/openllet
7 https://owlcs.github.io/owlapi



Analysing Large Inconsistent Knowledge Graphs 9

in the first step of our approach. For evaluating completeness, this experiment
requires datasets in which Openllet can retrieve (almost) all contradictions with
their justifications. For this, we rely on two relatively small datasets:

– Pizza ontology: dataset of 1,944 triples serving as a tutorial for OWL and
Protégé. We choose this dataset based on the fact that its contradictions and
anti-patterns are known, and therefore can represent a gold standard for our
approach.

– Linked Open Vocabularies (LOV): dataset of 888,017 triples represent-
ing a high quality catalogue of reusable vocabularies for the description of
data on the Web [20]. We choose this dataset since it is small enough to
retrieve almost all of its justifications using openllet.

Depending on the size of the dataset, we choose various subgraph size limits
and observe the number of detected anti-patterns and the runtime for each of
the three steps of our approach.

Table 1: Impact of the subgraph size limit on the number of detected anti-
patterns and the runtime of the approach (in seconds) for the Pizza dataset.

Subgraph
Size Limit

Number of
Anti-patterns

Total
Runtime

Step 1
Runtime

Step 2
Runtime

Step 3
Runtime

50 2 3.22 0.8 2.41 0.01
100 2 4.38 1.33 3.04 0.01
250 2 7.93 2.99 4.89 0.05
500 2 13.07 5.59 7.44 0.04
750 2 18.21 7.95 10.2 0.08

1,000 2 23.15 10.26 12.84 0.08
2,000 2 50.5 20.99 28.41 1.06

Table 1 presents the results of this experiment on the Pizza dataset. This
experiment shows that splitting the Pizza dataset into various subgraphs with a
maximum size of 50 triples (2.57% of the dataset size) significantly reduces the
runtime of our approach compared to splitting the KG into larger subgraphs.
Most importantly, this decrease in the total runtime does not impact the number
of the detected anti-patterns. Looking further into the runtime of the different
steps, the improvement is mostly noticeable in the first two steps of the approach.
This shows that it is more efficient to construct smaller subgraphs (i.e. step 1),
and retrieve separately all their justifications (i.e. step 2). Although the number
of detected anti-patterns does not vary between the seven experiments, we notice
a slight increase in the runtime of generalising justifications to anti-patterns (i.e.
step 3). This is due to the fact that we split the KG into several overlapping
subgraphs, regardless of the subgraph size limit. This means that when larger
subgraphs are constructed, the same justifications are found several times, and



10 Thomas de Groot, Joe Raad, and Stefan Schlobach

hence requires to be redundantly generalised and compared with existing anti-
patterns.

Table 2: Impact of the subgraph size limit on the number of detected anti-
patterns and the runtime of the approach (in seconds) for the LOV dataset.

Subgraph
Size Limit

Number of
Anti-patterns

Total
Runtime

Step 1
Runtime

Step 2
Runtime

Step 3
Runtime

Number of
Subgraphs

500 0 1,783.12 215.72 1,565.7 1.7 101,673
1,000 2 3,505.02 428.72 3,073.1 3.2 50,960
2,500 31 4,328.82 570.52 3,749.1 9.2 20,436
5,000 39 4,525.15 667.85 3,829.3 28 10,218
7,500 39 4,976.92 694.02 4,271.8 11.1 6,812
10,000 39 5,105.9 739.2 4,348.9 17.8 5,109
25,000 39 5,346.67 835.07 4,493.4 18.2 2,041
50,000 39 5,497.3 857.8 4,615.4 24.1 1,014
100,000 39 5,758.3 946.4 4,791.8 20.1 507

Table 2 presents the results of this experiment for the Linked Open Vocab-
ulary dataset. This experiment shows that choosing a relatively small subgraph
size limit (1,000 triples or less) in larger datasets has clear consequences on the
number of detected anti-patterns. On the other hand, increasing the subgraph
size limit to more than 5,000 triples does not help detecting any additional anti-
patterns. It just results in the increase of the runtime by up to 27% (from 4,525
seconds up to 5,758 seconds). Similarly to the previous experiment, this increase
in the runtime is mostly noticeable in the first two steps of the approach. Specif-
ically, constructing only 507 subgraphs with a size limit up to 100,000 triples
takes 4.4 times more than constructing 101,673 subgraphs with a size limit of
500 triples. This observation suggests that despite being a catalogue of different
data vocabularies, the LOV dataset is quite connected, which results in con-
nected components possibly up to 100,000 triples to be generated.

5.2 Scalability Evaluation

In the second part of these experiments, we evaluate the scalability of our ap-
proach on some of the larger and most popular KGs in the Web. We choose the
three following datasets, after testing that they are all indeed inconsistent:

– YAGO: dataset of more than 158 million triples covering around 10 million
entities derived from Wikipedia, WordNet and GeoNames [17].

– DBpedia (English): dataset of over 1 billion triples covering 4.58 million
entities extracted from Wikipedia [1].

– LOD-a-lot: dataset of over 28 billion triples based on a crawl of a very large
subset of the LOD Cloud in 2015 [8].



Analysing Large Inconsistent Knowledge Graphs 11

Based on the results of the previous experiment, we set the subgraph size
limit to 5,000 triples and run our approach for each of these three datasets.
Table 3 shows that finding most anti-patterns from a large KG is feasible, but
computationally expensive. Specifically, detecting 135 and 13 anti-patterns from
YAGO and DBpedia takes around 4 and 13 hours respectively. While on the
other hand detecting 222 anti-patterns from the LOD-a-lot takes almost a full
week. Considering the size of the dataset, and the number of different namespaces
(which we use as proxies for dataset provenance), the results suggest that YAGO
contains the most anti-patterns compared to DBpedia and LOD-a-lot.

Table 3: Results of detecting anti-patterns from three of the largest KGs in the
Web.

LOD-a-lot DBpedia YAGO

number of triples 28,362,198,927 1,040,358,853 158,991,568
number of namespaces 9,619 20 11

number of distinct anti-patterns 222 13 135
largest anti-pattern size 19 12 16

runtime (in hours) 157.56 13.01 3.97

6 KGs Inconsistency Analysis

In the previous section, we showed that it is feasible to detect anti-patterns
from some of the largest KGs in the Web, when the KG is split into overlapping
subgraphs with a maximum size of 5,000 triples. In this section, we further anal-
yse these retrieved anti-patterns and compare the inconsistency characteristics
between these three KGs.

6.1 What is the most common size of anti-patterns?

We already saw from Table 3 that the largest anti-patterns in the LOD-a-lot,
DBpedia, and YAGO contain respectively 19, 12, and 16 edges. Looking at their
size distribution, Figure 4 shows that the most common size of anti-patterns in
the three KGs ranges between 11 and 14 edges.

6.2 What are the most common types of anti-patterns found in
these KGs?

Anti-patterns represent a generalised notion of justifications that describe com-
mon mistakes in a KG. In our analysis of the detected anti-patterns in these three
KGs, we found that a number of the different anti-patterns refer to an even more
general type of mistakes, and can be further grouped together. This general type
of anti-patterns consists of anti-patterns with the same structure of nodes and



12 Thomas de Groot, Joe Raad, and Stefan Schlobach

0 5 10 15 20 25
Size of the anti-pattern

0

5

10

15

20

25

30

35

Am
ou

nt
 o

f a
nt

i-p
at

te
rn

s

DBpedia
Yago
LOD

Fig. 4: Size distribution of the anti-patterns in these three KGs.

edges, but with different size. For instance, Figure 5 presents two anti-patterns,
with different size, but referring to the same more general type of mistake: one
instance (blue node) as a member of two classes (green nodes directly related to
the blue node) that are descendants of two disjoint classes. The only difference
between the anti-pattern on top of the figure with the one on the bottom, is that
the former is of size 13 whilst the latter is of size 7. These anti-patterns can be
grouped together and referred to as cycle graphs anti-patterns.

Based on this principle, we can distinguish between three general types of
anti-patterns found in these investigated KGs: cycle graphs, kite graphs, and
domain or range-based graphs. While the first type of anti-patterns is presented
in Figure 5, examples of kite graphs anti-patterns are presented in Figure 6, and
domain or range-based anti-patterns were previously presented in Figure 2 for
contradiction B. Table 4 presents the distribution of these general type of anti-
patterns in the three investigated KGs. It shows that kite graphs anti-patterns
are the most common in the LOD-a-lot and YAGO, whilst cycle graph anti-
patterns are the most common in DBpedia. All detected variants of these three
general type of anti-patterns can be explored online8.

Table 4: General types of anti-patterns found in these three KGs.
Type of Anti-patterns LOD-a-lot DBpedia YAGO

Cycle graphs 54 12 11
Kite graphs 156 1 108

Domain or Range-based graphs 12 0 16

8 https://thomasdegroot18.github.io/kbgenerator/Webpages/

statisticsOverview.html



Analysing Large Inconsistent Knowledge Graphs 13

Fig. 5: Cycle graph anti-pattern.

Fig. 6: Kite graph anti-pattern.



14 Thomas de Groot, Joe Raad, and Stefan Schlobach

6.3 What is the benefit in practice of generalising justifications into
anti-patterns?

In addition to the fact that justifications are domain-dependent and possibly
complex, understanding and analysing justifications of contradictions can also
be impractical due to their redundancy and frequency. This is particularly true
in the three large investigated KGs, as we can see in Figure 7. This plot presents
the distribution of justifications per anti-pattern for these three KGs. It shows
that the detected anti-patterns in the LOD-a-lot, DBpedia, and YAGO make the
billions of available contradictions more interpretable by generalising them into
222, 13, and 135 anti-patterns, respectively. Specifically, Table 5 shows that on
average each anti-pattern generalises around 5M, 7.7K, and 133K justifications
in the LOD-a-lot, DBpedia, and YAGO respectively. It also shows that a single
anti-pattern in the LOD-a-lot generalises up to 45M retrieved justifications, and
that interestingly the LOD-a-lot, a dataset that largely represents the current
status of the LOD Cloud, contains over a billion contradictions.

0 50 100 150 200
Anti-pattern type

101

103

105

107

Ju
st

ifi
ca

tio
ns

 p
er

 a
nt

i-p
at

te
rn

DBpedia
Yago
LOD

Fig. 7: Distribution of justifications per anti-pattern.

Table 5: Impact of generalising justifications to anti-patterns
Justification per Anti-Pattern LOD-a-lot DBpedia YAGO

Maximum 45,935,769 32,997 379,546
Minimum 2 1 1
Average 4,988,176.9 7,796.07 133,998.31
Median 23,126 4,469 106,698
Total 1,107,375,273 101,349 1,8089,773



Analysing Large Inconsistent Knowledge Graphs 15

7 Conclusion

In this work, we introduced anti-patterns as minimal sets of (possibly) unin-
stantiated basic triple patterns that match inconsistent subgraphs in a KG. We
can use anti-patterns to locate, generalise, and analyse types of contradictions.
Retrieving contradictions from a KG and finding the extent to which a KG is in-
consistent can now be formulated as a simple SPARQL query using anti-patterns
as BGPs. Our second contribution is a pipeline that extracts anti-patterns from
inconsistent KGs. In theory, such approach can extract all anti-patterns, but the
implementation presented in this work does not guarantee completeness due to
the splitting of the KG for scalability reasons. The source code, as well as the
detected anti-patterns are publicly available.

Finally, we showed on small KGs that our approach can detect in practice
all anti-patterns, and showed on KGs of billions of triples that our approach
can be applied in the context of the Web of Data. Specifically, we showed on
commonly used KGs such as the LOD-a-lot, DBpedia, and YAGO that billions
of justifications can be generalised into few hundreds of anti-patterns. While
these findings prove the spread of billions of logically contradicting statements
in the Web of Data, this work also shows that these contradictions can now be
easily located and possibly repaired, as they only refer to three different general
patterns.

As an extension of this work, we want to exploit the strict semantics of 558
million owl:sameAs links recently made available [2]. Their closure consisting
of over 35 billion triples can allow us to characterise, analyse and potentially
benefit from additional anti-patterns to repair the existing contradictions in the
Web of Data.

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: Dbpedia:
A nucleus for a web of open data. In: The semantic web, pp. 722–735. Springer
(2007)

2. Beek, W., Raad, J., Wielemaker, J., Van Harmelen, F.: sameas. cc: The closure of
500m owl: sameas statements. In: European Semantic Web Conference. pp. 65–80.
Springer (2018)

3. Bonte, P., Ongenae, F., Schaballie, J., De Meester, B., Arndt, D., Dereuddre, W.,
Bhatti, J., Verstichel, S., Verborgh, R., Van de Walle, R., et al.: Evaluation and
optimized usage of owl 2 reasoners in an event-based ehealth context. In: 4e OWL
reasoner evaluation (ORE) workshop. pp. 1–7 (2015)

4. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub) graph isomorphism
algorithm for matching large graphs. IEEE transactions on pattern analysis and
machine intelligence 26(10), 1367–1372 (2004)

5. Debattista, J., Lange, C., Auer, S., Cortis, D.: Evaluating the quality of the lod
cloud: An empirical investigation. Semantic Web (Preprint), 1–43 (2018)

6. Eiter, T., Fink, M., Schüller, P., Weinzierl, A.: Finding explanations of inconsis-
tency in multi-context systems. Artificial Intelligence 216, 233–274 (2014)



16 Thomas de Groot, Joe Raad, and Stefan Schlobach

7. Färber, M., Bartscherer, F., Menne, C., Rettinger, A.: Linked data quality of db-
pedia, freebase, opencyc, wikidata, and yago. Semantic Web 9(1), 77–129 (2018)

8. Fernández, J.D., Beek, W., Mart́ınez-Prieto, M.A., Arias, M.: Lod-a-lot. In: Inter-
national Semantic Web Conference. pp. 75–83. Springer (2017)

9. Gupta, A., Nishimura, N.: The complexity of subgraph isomorphism for classes of
partial k-trees. Theoretical Computer Science 164(1-2), 287–298 (1996)

10. Horridge, M., Parsia, B., Sattler, U.: Explaining inconsistencies in owl ontologies.
In: International Conference on Scalable Uncertainty Management. pp. 124–137.
Springer (2009)

11. Huang, Z., Van Harmelen, F., Ten Teije, A.: Reasoning with inconsistent ontologies.
In: IJCAI. vol. 5, pp. 254–259 (2005)

12. Kaminski, T., Knorr, M., Leite, J.: Efficient paraconsistent reasoning with on-
tologies and rules. In: Twenty-Fourth International Joint Conference on Artificial
Intelligence (2015)

13. Noori, A., Moradi, F.: Simulation and comparison of efficency in pathfinding algo-
rithms in games. Ciência e Natura 37(6-2), 230–238 (2015)

14. Paulheim, H.: Knowledge graph refinement: A survey of approaches and evaluation
methods. Semantic web 8(3), 489–508 (2017)

15. Plessers, P., De Troyer, O.: Resolving inconsistencies in evolving ontologies. In:
European Semantic Web Conference. pp. 200–214. Springer (2006)

16. Schlobach, S., Cornet, R., et al.: Non-standard reasoning services for the debugging
of description logic terminologies. In: Ijcai. vol. 3, pp. 355–362 (2003)

17. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In:
Proceedings of the 16th international conference on World Wide Web. pp. 697–706.
ACM (2007)

18. Töpper, G., Knuth, M., Sack, H.: Dbpedia ontology enrichment for inconsistency
detection. In: Proceedings of the 8th International Conference on Semantic Sys-
tems. pp. 33–40. ACM (2012)

19. Toulmin, S.E.: The uses of argument. Cambridge university press (1956)
20. Vandenbussche, P.Y., Atemezing, G.A., Poveda-Villalón, M., Vatant, B.: Linked

open vocabularies (lov): a gateway to reusable semantic vocabularies on the web.
Semantic Web 8(3), 437–452 (2017)

21. Zhi, H.l.: A max-term counting based knowledge inconsistency checking strategy
and inconsistency measure calculation of fuzzy knowledge based systems. Mathe-
matical Problems in Engineering 2015 (2015)


